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Abstract-The role of temperature-dependent viscosity is studied in the Row and vortex instability of a 
heated horizontal free convection boundary layer flow in a saturated porous medium. For an isothermal 
surface, similarity solutions are found to exist for viscosity variation expressed as a general function of 
temperature. For exponential variation of viscosity with temperature, the numerical results for Nusselt 
number, critical Rayleigh number and associated wave number at the onset of vortex instability are 
presented over a wide range of wall to ambient viscosity ratio parameters. It is found that the variable 
viscosity effect enhances the heat transfer rate and destabilizes the flow for liquid heating, while the opposite 

trend is true for gas heating. 

t INTRODUCTION 

WHEN NATURAL convection heat transfer takes place 
under conditions where there are large temperature 
differences within the fluid, it is necessary (for accu- 
racy) to consider the effects of variable fluid proper- 
ties. Analysis of natural convection boundary layer 
flow with variable viscosity in a viscous fluid has been 
performed rather extensively (see, for example, ref. 
[I], and the references cited therein). The results 
showed that variable viscosity has a significant effect 
on the thermal and momentum transport predictions. 
However, the analogous problem of natural con- 
vection boundary layer flow in a saturated porous 
medium has received rather little attention. Earlier 
studies have considered mostly the variable viscosity 
effects on the onset of convection in a horizontal 
porous layer bounded by two parallel plates heated 
from below. 

Kassoy and Zebib [2] examined the variable vis- 
cosity effects on the onset of convection in a water- 
saturated porous medium. The temperature difference 
between the top and bottom is as large as 250°C. The 
effects of an eight-fold variation in kinematic viscosity 
are included. The critical Rayleigh number is found 
to be substantially reduced from the classical value of 
47? for the Benard problem of porous media. Straus 
and Schubert [3] and Home and O’Sullivan [4] also 
considered the onset of convection of water as a non- 
Boussinesq fluid with viscosity and thermal expan- 
sivity dependence. The reported critical Rayleigh 
number is reduced by as much as a factor of 31 below 
the classical value of 4x2. 

t To whom correspondence should be addressed. 

Gary et nl. [5] investigated the effects of significant 
viscosity variation on convective heat transport in 
water-saturated porous media in a rectangular cavity. 
It was found that the flow and temperature fields 
became unstable at even moderate values of the 
Rayleigh number and exhibited a fluctuating convective 
state analogous to that observed for the constant vis- 
cosity case. Blythe and Simpkins [6] applied an inte- 
gral method to examine the natural convection in 
a two-dimensional cavity filled with fluid-saturated 
porous media for the case in which the viscosity is 
temperature-dependent. The variable viscosity effect 
on natural convection in an internally heat-generating 
porous medium in a short, vertical circular cylinder 
was studied by Dona and Stewart [q. Recently, Ramrez 
and Saez [8] studied the forced convection boundary 
layer flow in a saturated porous medium con- 
taining a fluid with temperature-dependent viscosity. 
Lai and Kulacki [9] investigated the effect of variable 
viscosity on mixed convection boundary layer flow 
around a vertical surface in a saturated porous 
medium. In refs. [8,9], the linear variation of viscosity 
is assumed. Therefore, they cannot satisfy most of the 
engineering applications, except for very small wall 
and ambient temperature differences. 

The flow and vortex modes of instability in natural 
convection boundary layer flow over a horizontal or 
an inclined heated plate in a saturated porous medium 
with constant viscosity have been the subject of studies 
of Cheng and Chang [lo], Hsu et al. [I I], and Hsu 
and Cheng [ 121. Jang and Chang [ 131 re-examined the 
same problem for an inclined plate, where both the 
streamwise and normal components of the buoyancy 
forcer are retained in the momentum equations. 
Therefore, ref. [13] provides new vortex instability 
results for small angles of inclination from the hori- 
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NOMENCLATURE 

dimensional spanwise wave number Greek symbols 
temperature difference, T, - T, effective thermal diffusivity 
similarity stream function profile ; coefficient of thermal expansion 
dimensionless disturbance stream ‘I similarity variable, y(Ra,) ‘/‘lx 
function amplitude, $/[ia(Ra,) “3] 0 dimensionless temperature, 
gravitational acceleration CT-- TcJLTw- T,,) 
dimensionless wave number, ax/(Ra,) “j 0 dimensionless disturbance temperature 
permeability amplitude, F/( T, - T,) 
local Nusselt number P absolute dynamic viscosity 
average Nusselt number for plate P’ disturbance dynamic viscosity 
length L 1’ kinematic viscosity 
perturbation pressure P density 
pressure 0* wall to ambient viscosity ratio, 
local Rayleigh number, v* = v,/v, 
p,gSfW’w- T,)x//.G stream function 
a general function for viscosity variation Zf disturbance stream function 
with temperature ‘J disturbance stream function amplitude. 
temperature 
perturbation temperature 
disturbance temperature amplitude Subscripts 
x direction disturbance velocity W condition at the wall 
amplitude 00 condition at the free stream. 

U, v, IV volume averaged velocity in the x, y, : 
directions 

u’, v’, W’ disturbance velocity in the x, y, i Superscript 
directions * critical condition. 

x, y, z axial, normal and spanwise 
coordinates. 

zontal (4 < 30”) and more accurate results for large 
angles of inclination (4 > 30”) than the previous 
study [12]. Later, Jang and Chang [14] studied the 
vortex instability of horizontal natural convection in 
a porous medium resulting from combined heat and 
mass buoyancy effects. The effects of a density ex- 
tremum on the vortex instability of an inclined buoy- 
ant layer in porous media saturated with cold water 
were examined by Jang and Chang [I 5, 161. 

All of these works are based on the Darcy for- 
mulation. However, at a higher Rayleigh number or 
in a high porosity medium, there is a departure from 
Darcy’s law and the inertia, convective, thermal 
dispersion and boundary effects not included in 
the Darcy model may become significant. Recently, 
Chang and Jang [ 17,181 were the first authors to study 
the non-Darcy effect on the vortex instability of a 
horizontal natural convection boundary layer flow in 
a saturated porous medium. However, the variable 
viscosity effect on the vortex instability of natural 
convection boundary layer flow over a horizontal 
plate does not seem to have been investigated. This 
motivated the present investigation. 

in a saturated porous medium. The variation of vis- 
cosity with temperature is represented by an expon- 
ential function, which is more accurate than a linear 
function for large temperature differences. In the base 
flow, similarity solutions are obtained for the case of 
an isothermal boundary condition. The analysis of 
the disturbance flow is based on linear stability theory. 
The resulting eigenvalue problem is solved using 
a variable step size sixth-order Runge-Kutta inte- 
gration scheme in conjunction with the Gram- 
Schmidt orthogonalization procedure [ 191 to main- 
tain the linear independence of the eigenfunctions. 

2. MATHEMATICAL ANALYSIS 

Before proceeding to the instability problem, con- 
sideration is given first to the basic natural convection 
flow along a heated horizontal surface, since the com- 
putation of instability criteria requires a knowledge 
of the velocity and temperature profiles for the base 
flow and the solution has not been investigated before. 

2.1. The base J?OW 
The present study examines in detail the effects of The physical model and the coordinate system are 

temperature-dependent viscosity on the flow and vor- shown in Fig. 1, where x represents the distance along 
tex instability of natural convection boundary layer the plate from its leading edge and y the distance 
flow adjacent to a heated horizontal surface embedded normal to the surface. If we assume that: (1) local 
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FIG. I. The physical model and coordinate system. 

thermal equilibrium exists between the fluid and solid 
phases, (2) the physical properties are considered to 
be constant, except for the density p and absolute 
viscosity I(, (3) the Boussinesq and boundary layer 
approximations are employed, then the governing 
equations based on Darcy’s law are given by : 

&+!!=o 
ax ay 

+p,9[1 -B(T- T,)l (3) 

(4) 

The absolute viscosity 1 is assumed to vary with 
temperature according to a general function form 
p = p,S(T), where p, is the absolute viscosity at the 
ambient temperature and therefore S( T,,) = I. 

Similarity analysis proceeds by employing a stream 
function such that u = H/&l and P = -aY/a.r and 
by defining 

v = Yb(-4 w.4 = W/(~) 

T- T, g=- 
Tw-Tm 

d(x) = T,(x)-T,. (5) 

Substituting equation (5) into equations (2)-(4), the 
momentum and energy equations become 

S( T)f” = - d.S’( T)f’O’ 

1 (6) 

where the primes (for functions f and 6) and the 
subscript x indicate derivatives with respect to r~ and 
X, respectively. 

The functions h, c, d and S must be such that x and 
Tdisappear from equations (6) and (7). These require 
that 

d(x) = T, - T, = constant 

b(x) = (Ra,) “3/X, c(x) = a(Ra,) “3 (8) 

where Ra, = p,qpK( T, - T,)x/pwcr is the local Ray- 
leigh number, in which the dynamic viscosity is 
evaluated at T,,. 

Substituting equation (8) into equations (6) and 
(7). results in 

S( T)f” = -dS’( T)f’Q’+ ;r@’ (9) 

0” = - if0’. (10) 
It can be seen that similarity exists for the case of 

an isothermal surface (i.e. d = constant) if S(T) is a 
function of rl only. This is true if S(T) is a function 
of 8. The ambient temperature corresponds to 0 = 0. 
Thus p = p,S(O) and S(0) = 1. A wide variety of 
functional forms of S(T) satisfy this requirement, 
for example : algebraic expressions. power series, 
exponential forms, etc. 

It is necessary, before proceeding, to choose a 
particular viscosity-temperature relation. The one 
adopted was a compromise between simplicity and 
satisfactory agreement with experimental data. An 
exponential relation, p = Bexp (AT), seems most 
appropriate to fulfil these conditions (see Table I), 
where A and B are constants adopted from the least 
square fitting for a particular fluid. In this case, it can 
be shown that 

S(T) = exp [A(T- T J] = (u*)” 7 (11) 

where u* = u,/u, = exp [A (T,-- T,)] is the wall to 
ambient viscosity ratio parameter. Substituting the 
exponential form of S(T) into equation (9). one may 
have 

f” = -(In v*)f’e’+ $p*‘-“0’ (12) 
8” = - ye’. (13) 

For the case of u* = I the equations reduce to the two- 
dimensional base flow equations for constant viscosity 
evaluated at the ambient temperature [lo]. The trans- 
formed boundary conditions are 

f(o) = fyo0) = e(o) - I = e(c0) = 0. (14) 

The local and average Nusselt numbers are as follows : 

Nu.r 
Ra’/3 - - m9i, s = -38’(O). (15) ‘I 

2.2. The disturbance flow 

In the usual manner for linear stability analysis, 
the velocities, pressure, temperature and viscosity are 
assumed to be the sum of mean and fluctuating com- 
ponents, here denoted as barred and primed quanti- 
ties, respectively, 

u(x, y, z, t) = U(x, y) + u’(x, y, z, I) 

u(x, y, z, t) = U(x, y) + u’(x, y. z, 1) 

w(x, y, z, 1) = w’(x, y. z, t) 

P(X, y, z, t) = m, Y) +P’(x, Yv Z? t) 

T(x, y, z, t) = F(x, y)+ T’(x, y, z, t) 

p(T) = ji(F’)+p’. (16) 
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Table 1. The values of A and B for different fluids; the viscosity unit is centipoise 

Fluid Air Water 

Spindle 
oil 
PO1 

Silicone DC 
F-60 
WI 

Mobiltherm 
600 oil 

PO1 

Temperature 
range 

Pr, (25°C) 
A 
B 

% error 
compared to 
ref. 1201 

25-215°C 2cLlOO"C 2S75"C 2%75°C 25-75°C 
0.72 7 178 667 2148 
0.001515 -0.01577 -0.02928 -0.02223 -0.05136 
0.01883 1.286 24.29 106.02 437.88 

1.18 3.23 3.63 1.95 5.6 

After substituting equation (16) into the governing 
equations for the three-dimensional convective flow 
in a porous medium, subtracting the parts satisfied by 
the base flow quantities, and linearizing the distur- 
bance quantities, we arrive at the following equations 
for the disturbances : 

(17) 

K ap' 
"=-Fat (20) 

-aT -aT ,aT 
uYjy+"ay+"~ 

(21) 

Following the method of order-of-magnitude 
analysis described in detail by Hsu et al. [l 11, the 
terms &‘/ax, a2T’/ax2 in equations (17) and (21) can 
be neglected. The omission of &‘/ax in equation (17) 
implies the existence of a disturbance stream function 
1/1’ such that 

(22) 

We assume that the three-dimensional disturbances 
are of the form 

(V, u’, 73 = t&x, Y), h(x, Y), Q-T YN exp @z+qM) 
(23) 

where u is the spanwise periodic wave number, and 

q(x) = 
s 

ai(x)dx 

with a,(x) denoting the spatial growth factor. For 
the lowest order approximation, q(x) = CL~X. Setting 

tl, = 0 for neutral stability yields 

kzi+ioG(lnv*)& 
w cc 

a$ae a2$ -(In v*) - - = ~ 
ay ax axay (24) 

a$ae 
+ (v*)” (In v*) - - = - iaO,gP - 

ay ay 
~ T (25) 

Pm 

+zi(T,,,-Tm)~-iu$(Tw-Tm)~. (26) 

Letting 

k=ax 
Ru,;” ’ 

(27) 

we obtain the following system of equations 

(v*)@[F” + (In v*)B’F’- k2F] = 

-kRu.J”[l -(v*)@ (In v*)Ru.;*“(‘:~f’- if)]@ (28) 

@“+ffO’-[k2+j(1nv*)@‘f’]@ 

=&$2~F+[1+2(1 n v*)t@JF’j + kRuf”B’F 

(29) 

with the boundary conditions given by 

F(0) = O(0) = F(a) = @(co) = 0 (30) 

where the primes indicate the derivative with respect 
to II. Equation (30) arises from the fact that the dis- 
turbances vanish at the wall and in the free stream in 
a porous medium. Equations (28)-(30) constitute a 
fourth-order system of linear ordinary differential 
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equations for the disturbance amplitude distributions 
F(q) and O(q). For fixed v*, solutions of F(q) and 
O(q) are eigenfunctions for the eigenvalues Rn, and 
k. For the case of u* = 1, the equations reduce to the 
conventional disturbance equations for the constant 
viscosity assumption [II] with viscosity evaluated at 
the ambient temperature. 

3. NUMERICAL METHOD OF SOLUTION 

In the stability calculations, the disturbance equa- 
tions are solved by separately integrating two linearly 
independent integrals. The full solution may be writ- 
ten as the sum of two linearly independent solutions 

Two independent integrals (F,, O,), with i = I, 2, may 
be chosen so that their asymptotic solutions are 

F, = exp(-kq,), o,=o 

F2 = Aexp(-A2v,). O2 = exp(-A?q,) 
2 

(32) 

where 

A, = -[I +:(ln~*)Ra;“~~~]kRu,!.: 

(33) 

A sixth-order variable step size Runge-Kutta inte- 
gration routine is used here to solve first the base flow 
system, equations (12) and (13), and the results are 
stored for a fixed step size, Aq = 0.02, which is small 
enough to predict accurate linear interpolation 
between mesh points. Equations (28) and (29) with 
boundary conditions (30) are then solved as follows. 
For specified LJ* and k, Ra, is guessed. Using equations 
(32) as starting values, the two integrals are integrated 
separately from the outer edge of the boundary layer 
to the wall using a sixth-order Runge-Kutta variable 
step size integrating routine incorporated with the 
Gram-Schmidt orthogonalization procedure [ 191 to 
maintain the linear independence of the eigen- 
functions. The required input of the base flow to the 
disturbance equations is calculated, as necessary, by 
linear interpolation of the stored base flow. From the 
values of the integrals at the wall, E is determined 
using the boundary condition F(0) = 0. The second 
boundary condition, O(0) = 0, is satisfied only for an 
appropriate value of the eigenvalue Rcl,. A Taylor 
series expansion of the second condition provides a 
correction scheme for the initial guess of Ra,. Iter- 
ations continue until the second boundary condition 
is sufficiently close to zero (typically < IOe6). 

40 r 
35 

Ir 

- - - -  CO"sto"t w5c051ty. meng and Chmg UOI 

30 

25 

A 

v*-0 2 

f' 20 

;;L , 
0 2 4 6 El 

Fm. 2. Velocity profile across the boundary layer for various 
values of \a*. 

4. RESULTS AND DISCUSSION 

Numerical results for the tangential velocity, tem- 
perature profiles, Nusselt number, neutral stability 
curves, the critical Rayleigh number and wave number 
at the onset of vortex instability are presented for a 
range of wall to ambient viscosity ratio parameter 
u* from 0.1 to IO. As the temperature is increased, 
the liquid viscosity decreases, while the gas viscosity 
increases. Therefore, for a heated wall, values of 
u* < 1 correspond to the case of liquid heating, and 
values of u* > 1 correspond to the case of gas heating. 

Figures 2 and 3 show the tangential velocity and 
temperature profiles across the boundary layers for 
selected values of u* (0.2,0.5, I, 2.5 and 5). The dashed 
lines denote the traditional constant viscosity results 
(u* = 1) with the viscosity evaluated at the ambient 
temperature; the present results are in good agree- 
ment with those of Cheng and Chang [IO]. Because the 
viscosity in the liquid (or gas) decreases (or increases) 
with increasing temperature, a larger (or smaller) vel- 

8 

? 
FIG. 3. Temperature profile across the boundary layer for 

various values of v*. 
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0 

FIG. 4. The variation of Nusselt number and slip velocity 
with various values of IV*. 

ocity near the wall is expected for a heated wall. This 
agrees with the theoretical results shown in Fig. 2. It 
is also found that the effect of temperature-dependent 
viscosity on the velocity profiles is more pronounced 
than the effect on temperature profiles. Non-unity 
values of II* alter both the position and magnitude of 
the maximum velocity relative to that for the constant 
viscosity results (II* = I), as well as altering the tem- 
perature gradient at the wall. 

Figure 4 shows the alteration of Nusselt number 
and slip velocity with II*. The values are normalized 
by their respective values for the case of constant 
viscosity (II* = 1 ). It is seen that the constant viscosity 
results underestimate the Nusselt number for liquid 
heating and overestimate it for gas heating. For ex- 
ample. for a IO-fold variation in kinematic viscosity, 
the constant viscosity result based on the ambient 
temperature [IO] would be underestimated by 75% 
for liquid heating (II* = 0.1) and overestimated by 
40% for gas heating (u* = IO). It is interesting to note 
that for a heated wall. Darcy’s slip velocity may be 
reduced to zero due to the increase of the gas viscosity 
if the wall to ambient viscosity ratio is sufficiently 
large (u* z IO). 

Figure 5 shows the neutral stability curve, in terms 

lOOI 

k 

FIG. 5. Neutral stability curves for various values of Y*. 

Table 2. Critical Rayleigh numbers and the associated wave 
number for various values of v* 

v* Ra: k* 

0.1 23.272 I .3894 
0.2 25.791 I .0496 
0.5 29.586 0.8021 
I.0 33.028 0.6853 
2.5 38.275 0.5769 
5.0 42. I76 0.5106 

10.0 44.735 0.4517 

of the Rayleigh number Ra, and the dimensionless 
wave number k, for selected values of u* (0.2, 0.5, 1, 
2.5, 5 and IO). It is observed that for liquid heating 
(u* < I), the neutral stability curves shift to lower 
Rayleigh number and higher wave number, indicating 
a destabilization of the flow. while for gas heating 
(u* > I), the opposite trend is true. When the realistic 
variable viscosity effects are included, the reason for 
liquid heating (or gas heating) being more (or less) 
susceptible to instability than the traditional constant 
viscosity [I I] result is due to reduction (or increase) 
in the dissipative effects of viscosity. 

The critical Rayleigh number Raf and associated 
wave number k*, which mark the onset of longitudinal 
vortices, can be found from the minima of the neutral 
stability curves. These critical values are listed in Table 
2 for selected values of u* and are also plotted in Fig. 
6. For u* = I, the critical Rayleigh number and wave 
number are computed to be 33.028 and 0.6853, respec- 
tively, as compared to 33.47 and 0.692 reported in 
Hsu et al. [I I] appropriate for the constant viscosity 
case. It is seen that, for u* = 0.1 (liquid heating), the 
critical Rayleigh number is reduced by about 30% 
relative to the constant viscosity result (u* = l), while 
for u* = 10 (gas heating), thecritical Rayleigh number 
is increased by about 36%. The numerical results also 
indicate that as the viscosity parameter u* increases, 
the critical Rayleigh number increases and the associ- 
ated wave number decreases. 

v* 
FIG. 6. Critical Rayleigh number and associated wave num- 

ber for various values of v*. 
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FIG. 7. The streamlines (solid lines) and isotherms (dashed FIG. 9. The streamlines (solid lines) and isotherms (dashed 
lines) of the secondary flow at the onset of instability for lines) of the secondary flow at the onset of instability for 

Y* = 0.2 (liquid heating). Y* = 2.5 (gas heating). 

Figures 7-9 show the streamlines and isotherms 
for the secondary flow at the onset of instability for 
II* = 0.2 (liquid heating), 1 (constant viscosity) and 
2.5 (gas heating), respectively. The results show a 
relatively high density of steamlines near the heated 
wall for liquid heating when compared to the constant 
viscosity case and a relatively low density of stream- 
lines for gas heating. Therefore, the major effect of 
viscosity variation is to concentrate the convection in 
the lower part of the boundary layer, where reduced 
viscosity (liquid heating) tends to destabilize the 
flow, while increased viscosity (gas heating) tends 
to stabilize the flow. 

5. CONCLUSIONS 

A viscosity parameter, o* = II&,, has been suc- 
cessfully employed in a stability analysis to include 
the exponential temperature dependence of viscosity 
in the natural convection boundary layer adjacent to 

FIG. 8. The streamlines (solid lines) and isotherms (dashed 
lines) of the secondary flow at the onset of instability for 

v* = 1.0 (constant viscosity). 

an isothermal horizontal plate embedded in a satu- 
rated porous medium. The present results predict that 
variable viscosity has a significant effect on tem- 
perature and velocity profiles as well as the Nusselt 
numbers and critical Rayleigh numbers. It is shown 
that, for liquid heating, the variable viscosity effect 
enhances the heat transfer rate and destabilizes the 
flow; for gas heating, the opposite is true. As the 
viscosity parameter u* increases, the critical Rayleigh 
number increases and the associated wave number 
decreases. 
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